
Legacy systems: managing evolution through integration in a distributed and
object-oriented computing environment

David Lemaitre, Dominique Sauquet, Isabelle Fofol, Lofc Tanguy,
Francois-Christophe Jean, and Patrice Degoulet

Medical Informatics Department, Broussais University Hospital, Paris

Legacy systems are crucial for organizations since
they support key functionalities. But they become
obsolete with aging and the apparition of new tech-
niques. Managing their evolution is a key issue in
software engineering. This paper presents a strategy
that has been developed at Broussais University Hos-
pital in Paris to make a legacy system devoted to the
management of health care units evolve towards a
new up-to-date software. A two-phase evolution path-
way is described. The first phase consists in separat-
ing the interface from the data storage and
application control and in using a communication
channel between the individualized components. The
second phase proposes to use an object-oriented
DBMS in place of the homegrown system. An applica-
tion example for the management of hypertensive
patients is described.

INTRODUCTION

Bennett' defines legacy systems as "large software
systems that we don't know how to cope with but that
are vital to our organizations". Improving the value of
these systems is of great concern. Because they have
been neglected or because no one dared to modify
them, they are now out-of-date programs, although
they perform crucial work. Furthermore, they repre-
sent years of accumulated experience and
knowledge1.

In addition to these internal problems, the external
world in which these pieces of software are running
has changed considerably. This is especially true in
medical care computing. Important organizational and
technical changes have occurred.2 Decision making
can benefit from numerous and various information
and knowledge sources, many of them accessible
electronically. New software systems must take all
these changes into account and enable developers to
include new facilities in their applications. But new
software systems will eventually become the legacy
systems of tomorrow.' This is why they have to be
designed to be as easy to maintain and to adapt as pos-

sible. Object-orientation is widely considered to be a
technology that offers the mechanisms (e.g., reuse and
specialization) to meet these requirements.

Legacy systems issues have been addressed only in
the last few years. Many reasons have led to this fact:
researchers were not inclined to study such cases,
developers do not like to do the so-called "mainte-
nance" work which is considered less gratifying than
working on new software, and maintenance costs have
dramatically increased during the last decade.1 Case
studies have been published3, tools4 are available in
some areas of reengineering, and scientific papers5 are
setting the basics for future work. Reengineering leg-
acy systems is generally admitted to be a three-step
process:6
* describing and analyzing the current system (leg-

acy system),
* specifying the desired system (future system),
* and designing the pathway between the current

and the desired systems.

The choice of the transition path is a software engi-
neering process as well as a business decision. Engi-
neers have to set up different valid solutions and
managers have to choose the best solution on cost/
effectiveness ratio.7 Classical approaches5 6 for the
transition path are the following:

* big bang approach
In this case, the new system is built up and put into
operation while the legacy system is shut down.

* phase-out approach (or incremental development)
The future system is built step by step and progres-
sively replaces the legacy system. A two-way data
translation is needed.

* phase-in approach (or evolutionary development)
The legacy system is rewritten to be able to
include changes. New modules are then added as
required.

0195-4210/95/$5.00 © 1995 AMIA. Inc. 132

This article deals with a migration experience that is
currently taking place in Broussais University Hospi-
tal in Paris. The current legacy system for the man-
agement of patient medical records is described as
well as the desired system. The evolution and the ini-
tial results of this experience are described and dis-
cussed.

PROBLEMS AND GOALS

The current legacy system

LIED8 is a homegrown medical application develop-
ment environment. It is an all-in-one temporal data-
base management system with a 4th generation
language (4GL). The latter is used to write programs,
design character-based interfaces, and generate
reports. LIED has been used since 1975 to build med-
ical applications, in particular in the hypertension and
cardiovascular domains. Approximately 20 medical
units in 12 different hospitals use such applications
and the oldest one manages over 60000 hypertensive
patient records. It addresses particular needs of medi-
cal applications such as time-related data. It has been
fine-tuned for access speed and data integrity.
Although the environment has been carefully main-
tained and documented, it falls short in some major
medical care computing areas. Indeed, it was a mono-
lithic and closed environment, the only link with the
outside world being through the file system. The data
model and allowed types also show the environment's
age. There was no possibility to declare abstract types
and easily manipulate complex objects. In any case,
the character-based interface would not be able to
present such data to the user.

Despite these weaknesses, the environment has been
extensively used in Broussais Hospital and others to
build applications for medical units. Planning the evo-
lution of the LIED system must take into account all
the data and knowledge accumulated over the years as
well as the new possibilities offered by network com-
puting.

The desired system
The goal of the target system is to improve the end-
users' (i.e., physicians and nurses) applications in the
following ways:

* convivial and multimedia user interface (using a
standard windowing system) to improve end-user
acceptance,

* abstract data types and complex object modeling
(images, signals, medical concepts, delegation
mechanisms, etc.) to manage more efficient and
comprehensive computerized patient records,

* easy access to dedicated services dealing with
decision support, image processing, natural lan-
guage processing, etc.,

* local area network connectivity to facilitate access
to hospital-wide databases (e.g., patient identifica-
tion, laboratory results) and to avoid redundant
information,

* wide area network connectivity for extended
access to knowledge bases (e.g., bibliographic
databases, drug and medical knowledge data-
bases) to help the physician in his decision-mak-
ing process,

* evolution capability and expendability.
The HELIOS framework

The HELIOS9 application framework appears to be a
good candidate as a development and application
environment. A HELIOS application is a set of
object-oriented components, connected to a commu-
nication channel, called HUB10, and communicating
through a message-passing mechanism. Two compo-
nents play a particular role in the application (kernel
components): the interface manager and the object-
oriented information system. The interface compo-
nent handles all man-machine interactions. It under-
stands messages such as showing a form, displaying a
value in a field, etc. Every user interaction is notified
to the other special component: the object-oriented
central repository and control component. It handles
the control of the application as well as the data stor-
age and retrieval. All other components are services
components. Such components include natural lan-
guage or image processing, connection services (i.e.,
connection to the outside world).

EVOLUTION STRATEGY
The selected evolution strategy is described in figure
1. It is a mix of the "big bang" and "phase-in" strate-
gies. Only the part concerning the applications (i.e.,
how to migrate legacy applications) will be discussed.

a ll-in

DBMS +4GL

data
control
interfc

object- oriented

application/
development

iO

--z~ ~ ~ -

r- --

I n-~~iprat ~Id

Lptapplication I

I I I
Figure 1 Evolution strategy

133

The migration of the legacy applications is considered
as a two-phase process:

1. integrating legacy applications into the HELIOS
application framework,

2. and replacing the LIED database management sys-
tem by the object-oriented database management
system of the new environment.

First phase

The integration phase consists in separating the inter-
face part from the data storage and control part of the
legacy system, as shown in figure 2. This creates the
two base components of a standard HELIOS applica-
tion that is compliant to a client/server architecture.

monolithic distributed

data
data (LIED)

contro

control_

interface

interface

legacy system desired system

Figure 2 Migration strategy (first phase)
The interface that was included as commands in the
4th generation programming language is replaced by
the HELIOS interface manager component. It consists
of basic interface objects (e.g., patient selection form,
alert and confirmation boxes, etc.) to which applica-
tion specific objects (e.g., consultation form, biologi-
cal results history, etc.) are added to create the
application interface component. These objects are
created with the HELIOS interface builder tool. It
complies to the HELIOS style guide'2, which gives a
common look and feel to every application. The data
storage and control part is transformed (phase-in
approach) into a component by extending its pro-
gramming language with connection, destination, and
message-passing commands. It acts as a data server
and application controller.

A set of messages has been designed so that compo-
nents can communicate with one another. The data
storage and control component includes data storage,
data retrieval, and procedure execution message
classes. The interface component can understand mes-
sages such as showing or hiding a window, setting or
restoring attributes (e.g., color, visibility, value, etc.)

of graphical objects. All messages, coded in ASN. 1,
are conveyed on the HELIOS bus.10

This integrated application performs the same tasks as
the old one. However, the ability to connect to the uni-
fication bus lets it use the service components of the
environment.

Second phase

The second phase of the evolution strategy is
described in figure 3. This phase mainly consists in
changing the data repository. The application must be
modeled in the object-oriented database. This work is
facilitated by the medical concept library and data
storage structures that are included as standard classes
of the development environment. When the applica-
tion is modeled using the environment's tools1 1, the
data must be exported from the legacy system to the
new application.

migrated application W genuine application

,/((LIED) (0-0)
tcontrolJ /\ tcontrolJ

, / ~HUBI

nterface ie evce nefc

Figure 3 Migration strategy (second phase)

RESULTS

The HELIOS interface manager component and unifi-
cation bus are written in C++ and run on different
UNIX platforms including DEC Unix, SUN OS and
Solaris, and HP-UX. The legacy system migration
strategy has been tested with an application, called
ARTEMIS, that deals with the follow-up of hyperten-
sive patients, in a DEC Alpha Unix environment. The
application graphical interface has been created with
the HELIOS tools that are based on the X/Motif
toolkit. All messages between the interface and the
LIED data server component are conveyed by the uni-
fication bus. A prototype of the ARTEMIS patient
repository has been developed with the GemStone
object-oriented DBMS. This development has
included the reengineering of the LIED data diction-

134

ary to a true medical concept library and the down-
loading of a significant set of patient records.

The ARTEMIS-2 application was installed in the out-
patient clinic of the Broussais hypertensive depart-
ment in January 1995. Patient data are entered directly
by the physician in the presence of the patient on X/
Window terminals. The traditional data entry with VT
terminals was maintained in the hospital ward.

To test the migration strategy and the acceptability of
the new ARTEMIS-2 application, an evaluation study
was performed during a four month period from
December 1994 (one month before installation) to
March 1995 (three months after installation). The
study concerned 9 physicians and 109 consultations at
the outpatient clinic. The length of consultation,
before and after the installation of the new applica-
tion, were recorded. The response times were meas-
ured and the global satisfaction of the physicians was
evaluated by means of visual-analog-scale based
questionnaires completed by physicians at the end of
the study period. Results are shown in Table 1.

Table 1. Results of the ARTEMIS-2 installation study

Evaluation criteria Results

Before installation mean consulta- 20.7 ± 7.8
tion duration ± SD (in minutes) (n=4 I)
After installation mean consulta- 23.4 ± 9.4
tion duration ± SD (in minutes) (n=68)
Patient record retrieval time ± SD 3.6 ± 0.3
(in seconds) (n=130)
Mean degree of satisfaction + SD 7.9 + 0.7
(in a scale from 0 to 10) (n=9)

There was no significant increase in the consultation
durations despite the minimal initial training of the
physicians (less than one hour). Access to patient
records was always inferior to four seconds. The
mean degree of satisfaction on a scale from 0 to 10
was high (7.9). The satisfaction about the old system
had not been measured in a similar way but we can
notice a rise in the number of physicians willing to
use the new computerized system.

DISCUSSION AND CONCLUSION
The strategy presented in this paper enables legacy
systems to evolve. Integrating the legacy system, in a
way very similar to the HERMES13 project's, in a
more general, open, and distributed application
framework offers a much wider range of evolution
possibilities. Separating the interface part from the
functions part of the legacy system, as recommended

by the Seeheim14 model, enables communication (by
the connection of both parts to the communication
channel) and presentation (through a unified interface
that could be made compliant with a medical interface
style guide12) integration in the framework. The
design of the interface, unlike Merlo15, has been done
through direct interaction with physicians to whom
several prototypes have been presented. We consid-
ered that the graphical interface should not be the
equivalent of the character-based one but rather
should benefit from all the new possibilities. In partic-
ular, the new interface offers windows such as tem-
perature graphs and scrollable biological ordered
tables or image display.

The message-passing communication mechanism
enables the legacy system to use the services offered
by the application framework as any genuine applica-
tion (i.e., an application developed from the ground-
up with the HELIOS development environment).
Thanks to this mechanism, the evolution of applica-
tions is fairly easy. It is a three step process:

* identifying the component that offers the needed
service,

* getting its public interface (i.e., the messages it
can answer to),

* and including these messages in the application
code, where the functionality is needed.

Decision support, image and natural language
processing are among the service components of the
HELIOS environment that will be included in the
future versions of the ARTEMIS-2 application. Com-
ponents that enable applications to communicate with
the outside world also exist. In particular, the Connec-
tion Services16 component will be configured to be
used as a gateway to access the central patient identity
database of the hospital through EDIFACT messages.
The architecture also enables a component to be
replaced by a new version, provided that the set of
messages (i.e., public interface) that it can understand
does not change or is augmented. Applications need
not be modified to take these changes into account.

ACKNOWLEDGMENTS

The development of HELIOS has benefited from the
financial support of the Commission of European
Union (AIM contracts A1004 and A2015) and Digital
Equipment Corporation (ERP FRO18).

We would particularly like to thank the physicians of
the hypertension department who accepted to test the
early versions of the ARTEMIS-2 application.

135

References

1. Bennett K. Legacy systems: coping with success.
IEEE Software. 1995; 12-1: 19-23.

2. Nobel J. Changes in health care: challenges for
information system design. Int. J. Biomed. Com-
put. 1995; 39: 35-40

3. Britcher RN. Re-engineering software: a case
study. IBM Systems Journal. 1990; 29-4: 551-
567.

4. Rock-Evans R., Hales K. Reverse Engineering:
Markets, Methods and Tools. London, Ovum
LTD. 1990.

5. Chikofski EJ., Cross JH. Reverse engineering and
Design Recovery: A Taxonomy. IEEE Software.
1990; 7:1: 13-17.

6. Feiler P. Reengineering: An engineering problem.
Special Report, CMU/SEI-93-SR-5. 1993. (acces-
sible on WWW at http://www.sei.cmu.edu/SEI/
pubs/abstracts/sei93sr5.html)

7. Sneed H. Planning the Reengineering of Legacy
Systems. IEEE Software. 1995; 12-1: 24-34.

8. Sauquet D., Degoulet P. LIED: A Semantic and
Temporal Data Management Language. Software
Engineering in Medical Informatics (Ed Timmers
T., Blum B.). IMIA, North-Holland, Amsterdam.
1991; pp. 267-277.

9. Jean FC., Degoulet P., Jaulent MC., et al.
HELIOS: A Medical Object-Oriented Software
Engineering Environment. Image Management
and Communication in Patient Care (Ed Mun S.,
Lemke H.). IEEE Computer Society Press, Los
Alamitos, California. 1993; pp. 156-163.

10. Sauquet D., Jean FC., Lemaitre D., Zapletal E.,
Degoulet P. The HELIOS Unification Bus: A Tool-
box to develop Client/Server Applications. Com-
put. Methods and Programs Biomed, Suppl. 1994;
45: S13-S22.

11. Lavril M., Dore L., Zapletal E., Jean FC., Degou-
let P. A Reuse Oriented Development Database:
The HELIOS Object Information System. Meth-
ods and Programs Biomed, Suppl. 1994; 45: S35-
S45.

12. Boralv E, Goransson B, Olsson E, Sandblad B.
Usability and efficiency. The HELIOS approach to
development of user interfaces. Comput. Methods
and Programs Biomed, Suppl. 1994; 45: S47-S64.

13. van Mulligen E., Timmers T., Brand J., et al.
HERMES: a health care workstation integration
architecture. Int. J. Biomed. Comput. 1994; 34-1-
4: 267-275.

14. User Interface Management and Design. Duce D.,
Gomes M., Hopgood F., et al. (Eds), Springer-Ver-
lag, 1991.

15. Merlo E., Gagne PY., Girard JF., et al. Reengineer-
ing User Interfaces. IEEE Software. 1995; 12-1:
64-73.

16. Jean FC., Mascart JJ., Codaccioni A., Lavril M.,
Sauquet D., Degoulet P. Using a meta-model to
build a Connection Service in an object-oriented
medical application development environment.
Proc. of the 18th SCAMC. 1994; pp. 483-487.

136

